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Abstract

Neural network (NN) emulators of the global 21 cm signal need an emulation error much less than the
observational noise in order to be used to perform unbiased Bayesian parameter inference. To this end, we
introduce 21cmLSTM—a long short-term memory (LSTM) NN emulator of the global 21 cm signal that leverages
the intrinsic correlation between frequency channels to achieve exceptional accuracy compared to previous
emulators, which are all feedforward, fully connected NNs. LSTM NNs are a type of recurrent NN designed to
capture long-term dependencies in sequential data. When trained and tested on the same simulated set of global
21 cm signals as the best previous emulators, 21cmLSTM has an average relative rms error of 0.22%—equivalently
0.39 mK—and comparably fast evaluation time. We perform seven-dimensional Bayesian parameter estimation
analyses using 21cmLSTM to fit global 21 cm signal mock data with different adopted observational noise levels,
σ21. The posterior 1σ rms error is ≈three times less than σ21 for each fit and consistently decreases for tighter noise
levels, showing that 21cmLSTM can sufficiently exploit even very optimistic measurements of the global 21 cm
signal. We have made the emulator, code, and data sets publicly available so that 21cmLSTM can be independently
tested and used to retrain and constrain other 21 cm models.

1. Introduction

Neutral hydrogen (H I) emits radiation at 1420.4 MHz
(λ≈ 21 cm) via the spin-flip transition that coupled with the
gas kinetic temperature during the Epoch of Reionization (EoR;
ending by z≈ 6), Cosmic Dawn (10 z 30), and Dark Ages
(z> 30−40; for reviews, see S. R. Furlanetto et al. 2006;
A. Bera et al. 2023). As a result, the differential brightness
temperature of the 21 cm line with respect to the cosmic
microwave background, δTb, is expected to be a powerful
probe of the astrophysics and cosmology of each of these
cosmic epochs. Numerous low-frequency radio experiments
(ν 225MHz, corresponding to z 5.3) have pursued mea-
surements of the sky-averaged (i.e., global; P. A. Shaver et al.
1999) 21 cm signal (J. D. Bowman et al. 2018; S. Singh et al.
2018, 2022; E. de Lera Acedo et al. 2022), as well as its power
spectrum (G. Paciga et al. 2011; F. G. Mertens et al. 2020;
C. M. Trott et al. 2020; H. Garsden et al. 2021; HERA
Collaboration et al. 2023), although systematic effects, mainly
from the galactic foreground in combination with beam
chromaticity and radio frequency interference (RFI), have so
far prevented a clear detection of the global signal (e.g.,
R. Hills et al. 2018; R. F. Bradley et al. 2019; P. H. Sims &
J. C. Pober 2020; K. Tauscher et al. 2020). Efforts are also
underway to measure the Dark Ages 21 cm signal from the
Moon (e.g., LuSEE-Night; S. D. Bale et al. 2023).

To constrain the physical parameters able to describe the
global 21 cm signal, Bayesian inference is a powerful tool (e.g.,

G. Bernardi et al. 2016; A. Liu & J. R. Shaw 2020; D. Rapetti
et al. 2020; E. Shen et al. 2022). Likelihood-based inference
techniques such as Markov Chain Monte Carlo (MCMC) and
nested sampling (J. Skilling 2004) are used to numerically
estimate the parameters of models from data and constrain the full
joint posterior distribution (e.g., C. J. Schmit & J. R. Pritchard
2018; J. Mirocha & S. R. Furlanetto 2019; R. A. Monsalve et al.
2019; H. T. J. Bevins et al. 2022a, 2024). Bayesian inference can
require 106 or more model evaluations to fully search the prior
volume and calculate the posterior, which can become exceed-
ingly computationally expensive, especially when constraining
many parameters and jointly fitting for different systematics.
Machine learning, in the form of artificial neural networks

(NNs), can be employed to mimic the physical models of
interest being sampled in a Bayesian fitting analysis and
efficiently obtain converged posteriors. Through supervised
learning of labeled data generated by the physical model,
networks can be taught the relationship between the input
parameters and the output (in this case, δTb) to quickly and
accurately emulate the model. Emulation error on the order of
1 mK can result in significantly biased posteriors even when
fitting global 21 cm signal mock data with statistical noise of
25mK (J. Dorigo Jones et al. 2023), and so emulation error
<1mK is needed to sufficiently exploit optimistic or standard
measurements of the 21 cm signal and obtain unbiased posteriors.
Long short-term memory (LSTM; S. Hochreiter & J. Schm-

idhuber 1997; F. A. Gers et al. 2000) networks are a type of
recurrent NN (RNN), which differ from feedforward networks
such as fully connected NNs (FCNNs; e.g., D. E. Rumelhart
et al. 1986), also called multilayer perceptrons, and convolu-
tional NNs. In short, FCNNs have a one-directional flow of
information that is not specifically designed for temporal
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awareness, while RNNs have feedback connections that allow
them to learn trends or sequences of features in data (e.g.,
Y. LeCun et al. 2015). LSTM networks have been successful in
numerous temporal prediction and classification problems in
astrophysics (H. Liu et al. 2019; L. Hu et al. 2022; Z. Sun et al.
2022; A. Iess et al. 2023; S. S. Tabasi et al. 2023; Y. Zheng
et al. 2023; S. Huber & S. H. Suyu 2024; J. I.-H. Li et al. 2024),
although their ability to emulate a physical, numerical model is
relatively unexplored (R. Zhang et al. 2020).

So far, LSTM networks or RNNs have not been utilized to
emulate the global 21 cm signal or any summary statistic in
21 cm cosmology. At the time of writing this paper, there exist
four publicly available NN-based emulators of the global 21 cm
signal—21CMGEM (A. Cohen et al. 2020), globalemu
(H. T. J. Bevins et al. 2021), 21cmVAE (C. H. Bye et al.
2022), and 21cmEMU (D. Breitman et al. 2024)—all of which
use FCNNs to predict δTb as a function of the independent
variable, being redshift or frequency, given (seven to nine)
input astrophysical parameters. In this paper, we present
a novel LSTM-based emulator of the global 21 cm signal,
called 21cmLSTM, which exploits the intrinsic correlation of
information between adjacent frequency channels (i.e., auto-
correlation) in 21 cm data to achieve unprecedented emulation
accuracy. D. Prelogović et al. (2022) found a similar benefit of
LSTM RNNs, but as a regressor for 21 cm 3D lightcones when
used with convolutional layers (see X. Shi et al. 2015; D. Kodi
Ramanah et al. 2022).

For detailed descriptions of RNNs and LSTM cells, see, e.g.,
R. C. Staudemeyer & E. R. Morris (2019) and A. Sherstinsky
(2020); here, we provide a conceptual overview. The “hidden
state” is the key element of RNNs, which reuses the
same weights and biases on each step and updates them via
back propagation through time (BPTT; R. J. Williams &
D. Zipser 1995). Information is fed through the RNN
sequentially, and the hidden state output from each step is
used to inform the output of all future steps. Basic RNNs are
limited to predicting ∼10 time steps, though, because of the
“vanishing gradient” problem, whereby the back-propagated
error either vanishes or explodes as more weights are
multiplied together (e.g., R. Pascanu et al. 2013). LSTM cells
were invented to avoid this problem by incorporating a
“memory cell internal state,” or “information highway,” which
enforces constant error flow. LSTM cells contain forget, input,
and output gates that determine the relative importance of each
time step and ensure the gradient can bridge 1000 or more steps
without vanishing, thereby helping to identify both short-term
and long-term correlations in data. For a single-layer (i.e.,
nonstacked) LSTM network, the number of activation opera-
tions is the data resolution (i.e., the number of channels or
bins), and so hyperparameter optimization relies purely on
determining the best number of layers of nonlinear activation
and the number of training epochs, whereas FCNNs contain an
additional dimension to optimize, being the number of nodes
per hidden layer.

The paper is organized as follows: in Section 2, we describe
the architecture and training of 21CMLSTM; in Section 3, we
present the emulation accuracy and speed of 21CMLSTM; in
Section 4, we present the posterior constraints when using
21CMLSTM in a Bayesian nested sampling analysis fitting mock
data; and in Section 5, we summarize the conclusions.

2. Methods

In this section, we describe the components of 21CMLSTM,
including the network architecture, the data sets used for
training, validation, and testing, the data preprocessing steps,
the training settings, and the optimization performed to ensure
robust and accurate emulation results. The emulator is written
in PYTHON, using the KERAS (F. Chollet et al. 2015) machine
learning libraries with a TENSORFLOW (M. Abadi et al. 2015)
backend. The code7 and data8 are both publicly available,
making 21CMLSTM simple to use and retrain.

2.1. Architecture

The emulator model is composed of two LSTM layers (i.e.,
two layers of nonlinear activation, equivalent to two hidden
layers in an FCNN), followed by a dense layer with output
dimensionality of one. Figure 1 shows a schematic diagram of
the 21CMLSTM network architecture, with arrows indicating
connections between layers or between LSTM cells. The
emulator takes as input the physical parameters, which are user-
defined, along with the list of frequencies, which is initialized
within the emulator, and outputs the brightness temperature,
δTb, for all frequencies. The emulator creates a 3D input array,
(N, n, p), for the first LSTM layer, where N is the number of
signals, n is the number of frequency channels in each signal,
and p is the number of physical parameters plus one for the
frequency channel. The LSTM cells are “many-to-many,”
meaning each cell predicts the entire signal sequence, and so
each LSTM layer has output dimensionality equal to the
number of frequency channels. As mentioned, the second
LSTM layer is connected to a fully connected output layer that
predicts δTb for each frequency channel, which is used to
calculate the loss during BPTT.
The LSTM layers use hyperbolic tangent (tanh) activation

function, and the output layer uses linear activation. The model
uses the Adam stochastic gradient descent optimization method

Figure 1. Schematic diagram of 21CMLSTM network architecture. The user
inputs the physical parameter values for the desired model, and the emulator
predicts δTb for all frequencies. The arrows indicate inputs to or outputs of
layers and LSTM cells. The input array is (N, n, p), where N is the number of
signals, n is the number of frequency channels per signal, and p is the number
of physical parameters plus one for the frequency channel. For emulating the
21CMGEM and ARES training sets, (N, n, p) is (24,562, 451, 8) and (23,896,
449, 9), respectively. See Section 2.1 for further details.

7 doi:10.5281/zenodo.13916935 (J. Dorigo Jones & S. Bahauddin 2024) and
https://github.com/jdorigojones/21cmLSTM.
8 doi:10.5281/zenodo.5084114 (A. Cohen et al. 2021); doi:10.5281/zenodo.
13840725.
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(D. Kingma & J. Ba 2015) and mean squared error (MSE) loss
function:

( ( ) ˆ ( )) ( )d n d n= á - ñT TMSE , 1b b
2

where ˆ ( )d nTb is the emulated signal produced by 21CMLSTM, and
δTb(ν) is the simulated, “true” signal produced by the model on
which the emulator is trained. We performed “hyperparameter
tuning” to minimize the prediction error, by testing one LSTM
layer, three LSTM layers, different activation functions, and the
mean absolute error loss function, and found the choices stated
above result in the most accurate network on average. We also
trained a one-layer Bidirectional LSTM (Bi-LSTM) model, which
is an LSTM network trained in both directions, and found that it
performs only slightly worse than the two-layer LSTM.

2.2. Data Sets

We train and test 21CMLSTM on the exact same publicly
available set of global 21 cm signals used to originally train and
test the previous emulators 21CMGEM, globalemu, and
21cmVAE. The data set was created (see A. Cohen et al. 2020
for a description) by a seminumerical model (E. Visbal et al.
2012; A. Fialkov et al. 2013, 2014) that is similar to 21CMFAST
(A. Mesinger et al. 2011). We refer to this data set as the
21CMGEM set, in which seven astrophysical parameters are
varied (Table 1; see A. Cohen et al. 2020) and each signal
spans the redshift range z= 5−50 with resolution δz= 0.1. We
apply the same parameter range restrictions and observational
constraints as stated in A. Cohen et al. (2020), H. T. J. Bevins
et al. (2021), and C. H. Bye et al. (2022) to obtain 24,562
training signals, 2730 validation signals, and 1704 test signals.
A representative subset of the 21CMGEM combined training
+validation set is shown in the top left panel of Figure 2.

We also train and test 21CMLSTM on a different data set
generated by another popular model for the global 21 cm
signal, Accelerated Reionization Era Simulations (ARES;9

J. Mirocha 2014; J. Mirocha et al. 2017), which is a physically
motivated semianalytical code that is the union of a 1D
radiative transfer code (J. Mirocha et al. 2012) and a uniform

radiation background code (J. Mirocha 2014). We created the
ARES set to be nearly equivalent to the 21CMGEM set, in order
to directly compare the accuracy of 21CMLSTM between the
two models, with: (i) the same size of the test set (1704) and a
similar (to within 3%) size of the combined training+validation
set (26,552, also split 90% for training and 10% for validation);
(ii) eight (instead of seven) astrophysical parameters varied
over wide ranges (see Table 1), which also control the star
formation efficiency (SFE) and ionizing photon production in
galaxies, although via a different parameterization (see
Section 3.3 for a comparison between the two sets); (iii) the
same redshift resolution and nearly identical range (z= 5.1
−49.9); and (iv) a similar physical EoR constraint on the
neutral hydrogen fraction (xH I) at z< 6; we require xH I< 5%
at z= 5.3, while the 21CMGEM set requires xH I< 16% at
z= 5.9, based on less recent constraints (see, e.g., X. Fan et al.
2006; I. D. McGreer et al. 2015; C. A. Mason et al. 2019;
S. E. I. Bosman et al. 2022; Y. Zhu et al. 2022; X. Jin et al.
2023). A representative subset of the ARES combined training
+validation set is shown in the bottom left panel of Figure 2.
Before the emulator is trained, the training and validation

data are preprocessed to be normalized between zero and one,
which is usual to facilitate network performance. Some of the
physical parameters are uniform only in log 10-space, and so
the log 10 is taken of these parameters: fX, Vc, and få for
21CMGEM, and cX, Tmin, få,0, and Mp for ARES. We note that

( )/= ´ - - -
f c M2.6 10 erg s yrX X

39 1 1 1. The signals (i.e., δTb
labels and frequency list) are flipped so that the network is
trained from high-z to low-z. Finally, we performed a min–max
normalization (Equation (2)) on each feature, x, in the data (i.e.,
physical parameter values and the list of frequencies) and labels
(i.e., δTb):

˜ ( )=
-
-

x
x x

x x
. 2min

max min

We found that normalizing the labels bin-by-bin per signal caused
the preprocessed signals to blow up at frequencies with little
variation (i.e., a small denominator in Equation (2)). Therefore,
the min–max normalization is performed globally for the signal
labels in order to preserve their original smooth shape, and for
consistency the same is done when normalizing the data.

Table 1
Astrophysical Parameters Varied in 21CMGEM and ARES Data Sets and Fit in Nested Sampling Analyses

Model Parameter Description Range (with Units)

21CMGEM f* SFE Log unif. [10−4, 5 × 10−1]
Vc Minimum circular velocity of star-forming halos Log unif. [4.2, 100] km s−1

fX X-ray efficiency of sources Log unif. [10−6, 103]
τ Cosmic microwave background optical depth Uniform [0.04, 0.2]
α Slope of X-ray spectral energy distribution (SED) Uniform [1, 1.5]

nmin Low-energy cutoff of X-ray SED Uniform [0.1, 3] keV
Rmfp Mean free path of ionizing radiation Uniform [10, 50] Mpc

ARES få,0 Peak SFE Log unif. [10−5, 100]
Tmin Minimum temperature of star-forming halos Log unif. [3 × 102, 5 × 105] K
cX Normalization of LX–SFR relation Log unif. [1036, 1044] erg s−1(Me yr−1)−1

Nlog H I Neutral hydrogen column density in galaxies Uniform [18, 23]
Mp Dark matter halo mass at få,0 Log unif. [108, 1015] Me

γlo Low-mass slope of få(Mh) Uniform [0, 2]
γhi High-mass slope of få(Mh) Uniform [−4, 0]
fesc Escape fraction of ionizing radiation Uniform [0, 1]

9 https://github.com/mirochaj/ares
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The emulator is trained on the preprocessed training set
signals and saves at each epoch the MSE loss of the network
evaluated on the training and validation sets. Only the training
set errors are used during BPTT to update the network weights,
while the validation set is used to gauge the emulator’s ability
to generalize to unseen signals and to check for overfitting. The
test set, which is created separately from the training and
validation sets, determines the ultimate accuracy of the trained
instance of 21CMLSTM.

2.3. Training

For the results presented in this work, we trained and tested
21CMLSTM using a single NVIDIA A100 GPU with 32 CPU
cores on the Blanca shared “condo” compute cluster operated
by University of Colorado Research Computing. The emulator
is trained first for 75 epochs with a batch size of 10 (i.e.,
training on batches of 10 signals at a time), then for 25 epochs
with a batch size of one, then finally for another 75 epochs with
a batch size of 10. The final saved network loads the model
weights and biases from the final epoch of training. Training
with a large batch size before and after a smaller batch size (i.e.,
batch size scheduling; see S. L. Smith et al. 2017) is an
increasingly common alternative to decaying the learning rate,
which facilitates robust gradient descent and speeds up the
overall training time, which is an average of 12.4 hr± 0.1 hr
(utilizing ≈6 GB of memory) when training 21CMLSTM on the

21CMGEM set. We tested different batch sizes between 1 and 32
and found the ones stated above ensured the model learns
efficiently, generalizes well to unseen data, and makes effective
use of computational resources.
Instead of incorporating an early stopping condition for the

training, we determined the approximate number of training
epochs that produces the most accurate and robust resulting
network on average. We trained and tested 21CMLSTM on the
21CMGEM set for 20, 25, 30, and 40 epochs of batch size one,
running six trials for each, and find that they have average relative
rms errors (see Equation (3) below) of 0.34%, 0.24%, 0.44%, and
0.29%, respectively. We performed this testing with both 75
epochs and 100 epochs of batch size 10 before and after the
epochs of batch size one, and we find marginal difference between
the two. Therefore, since 25 epochs of training with batch size
one, with 75 epochs of batch size 10 before and after, produced
the most accurately trained 21CMLSTM, and with no spurious
outlier trials, we employ this training epoch configuration. We
find that the validation loss curves reach a stable solution near the
end of training (see Figure A1), rather than increasing, which
indicates that there is no overfitting.

3. Emulation Results

3.1. Accuracy

We report the emulation accuracy of 21CMLSTM when
trained and tested on the same sets of global 21 cm signals that

Figure 2. Left: model realizations of 10,000 global 21 cm signals randomly drawn from the 21CMGEM (top) and ARES (bottom) combined training+validation sets
(Section 2.2). The ARES set has 1.3 times more statistical outliers and a higher PCA error (see Section 3.3), which is consistent with more signal variation and
consequently larger emulation error (Section 3.1). Right: histograms of the relative rms error (Equation (3)) for the best trial of 21CMLSTM, trained on the 21CMGEM
(top) and ARES (bottom) training sets and evaluated on the 1704 signals in each test set. The vertical gray (orange) lines depict the mean (median) error for 21CMLSTM
(solid), 21CMVAE (dashed), and globalemu (dashed–dotted).
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were used in the original papers for 21CMVAE (C. H. Bye et al.
2022), globalemu (H. T. J. Bevins et al. 2021), and
21CMGEM (A. Cohen et al. 2020), allowing a direct comparison
to these existing emulators (see Table 2). We also train and test
21CMLSTM on an equivalent data set created by ARES (see
Section 2.2).

Using the optimized network architecture and training
settings described in Section 2, we trained 20 identical trials
of 21CMLSTM on the 21CMGEM set in order to characterize the
stochasticity of the training algorithm. We evaluated each
trained network at the parameter values of the 1704 signals in
the 21CMGEM test set and compared the resulting emulated
signals to their corresponding “true” signals, computing for
each signal the rms error across the full frequency range in both
absolute units (millikelvins), and relative units (percent) as:

(∣ ( )∣)
( )

d n
=

T
Error

MSE

max
, 3

b

where MSE is defined by Equation (1) and max(|δTb(ν)|) is the
signal amplitude.

The distribution of the mean relative rms error for all 20 trials is
shown in Figure 3. Across the 20 trials, 21CMLSTM has an average
relative mean error of 0.223%± 0.031% (corresponding to an
average absolute error of 0.389mK± 0.047mK), an average
median error of 0.197%± 0.025%, and an average maximum error
of 0.824%± 0.183%. The best trial (top right panel of Figure 2)
has a mean relative error of 0.18% (corresponding to an absolute
error of 0.30mK), a median error of 0.16% (corresponding to
0.26mK), and a maximum error of 0.75% (corresponding to
1.34mK). Therefore, when trained and tested on the same data for
the same number of trials, 21CMLSTM has a 1.6 times lower
average error and ≈two times lower maximum error than those
reported for 21CMVAE (see Table 2).

When trained and tested on the equivalent ARES sets, the
best trial (bottom right panel of Figure 2) has a mean relative
error of 0.29% (corresponding to 0.42 mK), a median error of
0.21%, and a max error of 1.77% (see Section 3.3).

3.2. Speed

We report the emulation speed of 21CMLSTM as the average
time to predict a single global 21 cm signal in the 21CMGEM

test set (i.e., predict δTb for all n= 451 frequencies) from the
seven input physical parameters or the emulator evaluation
time including steps for data preprocessing (see Section 2.2)
and signal denormalization (see Equation (2)). We employed
the same computational resources stated in Section 2.3 and
used the time module to measure the total processing time,
which we note naturally depends on the computing power (e.g.,
number and type of CPU cores and GPUs). We report the speed
for a single evaluation10 for proper benchmarking with other
emulators, as some architectures are inherently more conducive
to parallel processing than RNNs, which are serial in nature.
Across 20 trials, the average emulation speed of 21CMLSTM

is 46 ms, which is similar to those reported for other emulators
of the global 21 cm signal, except for globalemu
(H. T. J. Bevins et al. 2021), which was designed to be faster.
We performed the same timing test using the latest versions of
21cmVAE (C. H. Bye et al. 2022) and globalemu
(H. T. J. Bevins et al. 2021) and measured their average
speeds to be 74 ms and 3 ms, respectively (see Table 2). The
speed and unprecedented accuracy of 21CMLSTM make it
capable of efficient Bayesian multiparameter estimation, as we
carry out in Section 4, which reflects the success of a two-layer
LSTM RNN in emulating 21 cm models.

3.3. Model Comparison

In Section 3.1, we found that 21CMLSTM performs somewhat
better when trained and tested on the 21CMGEM data sets than on
the ARES sets, with a best trial mean relative error of 0.183%
compared to 0.288% (right panel of Figure 2). We remind the
reader that the 21CMGEM data set was created by a large-volume
seminumerical model (E. Visbal et al. 2012; A. Fialkov et al.
2013, 2014), similar to 21CMFAST (A. Mesinger et al. 2011; see
A. Cohen et al. 2020), while ARES is a semianalytical model that
does not calculate 3D volumes. The difference in performance is
likely caused by differences in the parameterizations and
parameter ranges between the models, which can be qualitatively
compared in Table 1. In particular, a single parameter for the SFE
( få) is varied in the 21CMGEM sets, while four SFE parameters
( få,0, Mp, γlo, and γhi, which describe a double power law) are
varied in the ARES sets, which may result in a smaller range of
cosmic star formation histories and thus less variation among the
signals in the 21CMGEM sets compared to ARES (see the left panel
of Figure 2).
We briefly investigated the differences between the two

combined training+validation sets by performing a principal
component analysis (PCA) decomposition of each set. By
default, we set the number of components extracted equal to the
number of features or the number of physical parameters varied
in each data set (i.e., seven for 21CMGEM and eight for ARES).
We calculate the Mahalanobis distance (P. C. Mahalano-
bis 2018) for each signal, which is a common metric used for
multidimensional outlier detection and defined between two
points u and v as ( )( )( )= - -d u v V u v1 T , where (1/V ) is
the inverse covariance. We define outliers as those signals with
d> 3, meaning they are >3σ from the sample mean vector. We
find that 32% (8499) of the ARES set are outliers, while 25%
(6800) of the 21CMGEM set are outliers (shown in red in
Figure 4). This statistical analysis is consistent with the larger
variation in the ARES set, causing 21CMLSTM to have a higher

Table 2
Accuracy and Speed Metrics of Global 21 cm Signal Emulators

Emulator Mean Error Maximum Error Speed
(%) (%) (ms)

21CMLSTM 0.22 0.82 46
21CMVAE 0.35 1.84 74
globalemu 1.12 6.32 3
21CMGEM 1.59 10.55 160

Note. The information provided for each emulator is the average mean and
maximum rms errors across the full frequency range of ≈1700 test signals (see
Section 3.1) and the average evaluation speed when predicting one signal at a
time (see Section 3.2). The errors quoted for other emulators are from their
respective original papers (A. Cohen et al. 2020; H. T. J. Bevins et al. 2021;
C. H. Bye et al. 2022). For direct comparison purposes, the speeds quoted for
the first three emulators were measured using the same computational resources
stated in Section 2.3, while we note that the speeds measured in the original
papers for 21CMVAE (C. H. Bye et al. 2022) and globalemu (H. T. J. Bevins
et al. 2021) are 41.4 ms and 1.3 ms, respectively. The speed quoted for
21CMGEM is from its original paper (A. Cohen et al. 2020).

10 This uses the eval_21cmGEM.py script on the GitHub (see the first
footnote link).
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emulation error when trained and tested on ARES compared to
the 21CMGEM set. Beyond the visual comparison of model
features offered by Figure 4, we leave for future work a
detailed study of the similarities and differences between these
two popular models of the global 21 cm signal.

4. Posterior Emulation

In this section, we use 21CMLSTM as the model in the
likelihood of Bayesian nested sampling analyses to fit mock
global 21 cm signals with added statistical noise and numerically
estimate seven astrophysical parameters. We describe the steps to
obtain converged posterior distributions, and we present the signal
posterior constraints obtained by the emulator compared to the
fiducial signal for three 21 cm noise levels. Note that this analysis
ignores systematic uncertainties from the beam-weighted fore-
ground (see, e.g., G. Bernardi et al. 2016; J. J. Hibbard et al.
2020, 2023; D. Anstey et al. 2023; P. H. Sims et al. 2023;
M. Pagano et al. 2024; A. Saxena et al. 2024), RFI (Y. Shi et al.
2022; S. A. K. Leeney et al. 2023), and environmental effects
(see, e.g., S. Singh et al. 2018; N. S. Kern et al. 2020; N. Bassett
et al. 2021; S. G. Murray et al. 2022; E. Shen et al. 2022;
J. H. N. Pattison et al. 2024).

4.1. Bayesian Inference Analysis

We perform Bayesian parameter inference analyses to numeri-
cally estimate the posterior distribution P(θ|D, m) of a set of
parameters θ in a physical model m, given observed (mock) data D
with priors π on the parameters. Bayes’ theorem states this as:

( ∣ ) ( ) ( ) ( )
q

q p q
=DP m

Z
, , 4

where  is the likelihood function and Z is the Bayesian
evidence, which can be used for model comparison. We sample
from a multivariate log-likelihood function assuming Gaussian-
distributed noise:

( ) [ ( )] [ ( )] ( ) q q qµ - --D C Dm mlog , 5T 1

where the noise covariance, C, is a diagonal array of constant
values corresponding to the square of the estimated noise σ21.

We employ the Bayesian inference method of nested
sampling (J. Skilling 2004; for reviews, see G. Ashton et al.
2022; J. Buchner 2023), which converges on the best parameter
estimates by iteratively removing regions of the prior volume
with lower likelihood and computes the evidence and posterior
samples simultaneously. As mentioned in the introduction,
Monte Carlo methods like nested sampling and MCMC are
computationally expensive because they require many like-
lihood evaluations to sample the multidimensional posterior,
and so model emulators are desired to speed up or make
feasible such analyses. We choose nested sampling rather than
MCMC because the former is designed to constrain parameter
spaces with complex degeneracies or multimodal distributions
(J. Buchner 2023), which are expected when fitting 21 cm
mock or real data (e.g., H. T. J. Bevins et al. 2022b; J. Dorigo
Jones et al. 2023; D. Breitman et al. 2024; also see A. Saxena
et al. 2024). For all analyses, we employ MultiNest
(F. Feroz & M. P. Hobson 2008; F. Feroz et al. 2009, 2019),
with default evidence tolerance and sampling efficiency and
three times the default initial “live” point number (1200), which
we find results in consistent, converged posteriors. For an in-
depth description of MultiNest and other algorithms, see,
e.g., P. Lemos et al. (2023).
We use 21CMLSTM trained on the 21CMGEM set as the model

for the global 21 cm signal in the likelihood. The trained
instance of 21CMLSTM used for all analyses has a mean rms
error of 0.20% (corresponding to 0.33 mK) and a maximum
error of 0.63% when evaluated on the 21CMGEM test set, which
is consistent with the average accuracy found in Section 3.1.
We evaluate this emulator’s ability to constrain a synthetic
21 cm signal with added statistical noise.

Figure 3. Histogram of mean relative error for 20 trials of 21CMLSTM (in blue)
trained and tested on the 21CMGEM data set. The red histogram is the
approximate error for 20 trials of 21CMVAE trained and tested on the same data,
adapted from Figure 6 of C. H. Bye et al. (2022). The dashed blue (red) line
depicts the average error for 21CMLSTM (21CMVAE).

Figure 4. Top: 15,000 signals randomly selected from the 21CMGEM combined
training+validation set with PCA outliers shown in red (see Section 3.3).
Bottom: the same as the top panel, but for ARES.
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We fit three different fiducial mock global 21 cm signals that
are randomly selected from the 21CMGEM test set and have
different levels of added statistical white noise that is Gaussian-
distributed. The three different 21 cm noise levels tested
include the optimistic and fiducial scenarios for the REACH
radiometer (E. de Lera Acedo et al. 2022): σ21= 5 mK or
10 mK (referred to as “optimistic”) and σ21= 25 mK (referred
to as “standard”), where σ21 is the standard deviation noise
estimate. We note that in J. Dorigo Jones et al. (2023), we
tested these same noise levels, as well as 50 and 250 mK, and
compared emulated posteriors obtained using globalemu
(H. T. J. Bevins et al. 2021) to the corresponding “true”
posteriors obtained using ARES. From the ideal radiometer
sensitivity equation (e.g., J. Kraus 1966) for a non-systematics-
limited 21 cm experiment, assuming ν= 30MHz (i.e., Dark
Ages) and Δν= 0.5 MHz, the noise levels 5 mK, 10 mK, and
25 mK correspond to integration times of ≈7100 hr, ≈1800 hr,
and ≈300 hr, respectively.

4.2. Posterior Results

In the top panels of Figure 5, we present sets of posterior signal
realizations (shown in red) when using 21CMLSTM to fit three
different mock 21 cm signals (shown in dark blue), with added
noise levels (shown in light blue) of 5, 10, and 25mK, from left to
right. We show the 1σ posteriors in red, defined as the 68% of
samples with the lowest relative rms error with respect to the
fiducial signal (Equation (3)). In the bottom panels of Figure 5, we
present the residuals between the fiducial signal and each 1σ
posterior sample (i.e., ( ) ˆ ( )d n d n-T Tb b ; red), the mean of all the
posterior samples (solid black), and the emulator realization of the
fiducial signal (i.e., m21cmLSTM(θ0); dashed black). Table 3
summarizes each fit.

We find that for each 21 cm noise level tested, the posterior
mean residual is significantly less than the signal noise
estimate, σ21, across the full redshift range and approaches
the emulator error (0.33 mK; see Section 4.1) as the noise level
decreases. This is seen visually in the bottom panels of

Figure 5, as well as quantitatively in the mean and 1σ (i.e., 68th
percentile) rms errors of the posteriors for each fit (see σposterior
in Table 3). The mean relative rms error (Equation (3)) between
all the emulated posteriors and the true fiducial signal is 0.87%
(corresponding to 1.56 mK absolute error) for σ21= 5 mK,
1.42% (corresponding to 2.73 mK) for σ21= 10 mK, and
4.11% (corresponding to 6.87 mK) for σ21= 25 mK. The
posterior mean and 1σ errors are thus each ≈three times less
than σ21 for each fit. The fit obtained using 21CMLSTM
consistently improves for decreasing 21 cm noise levels,
corresponding to longer integration times, as expected due to
the increase in constraining power. We note that this general
trend of a more accurate fit to the mock signal for decreasing
noise levels is robust, as it does not depend on the random
signals being fit.
In addition to the posterior signal realizations discussed, we

can examine the marginalized 1D and 2D posterior distribu-
tions. We present the full posterior parameter distribution for
the σ21= 25 mK fit in Figure B1 and for the σ21= 5 mK fit in
Figure B2. For the standard noise level tested (i.e.,
σ21= 25 mK), we find that the 1D posteriors for three

Figure 5. Top: signal realizations of the 1σ posterior samples (red; see Section 4.2) obtained from Bayesian nested sampling analyses using 21CMLSTM to fit three
fiducial global 21 cm signals (dark blue) randomly selected from the 21CMGEM test set with added Gaussian-distributed noise (light blue bands) of 5 mK (left), 10 mK
(middle), and 25 mK (right). Bottom: residuals between the corresponding true fiducial signal and each 21CMLSTM 1σ posterior (red; see Table 3), the posterior mean
(solid black), and the emulation of the fiducial signal (dashed black).

Table 3
Summary of Nested Sampling Analyses

σ21 nlive nevaluations faccept Zlog σposterior
(mK) (mK)

5 1200 125,232 0.202 −255.9 ± 0.1 1.6
10 1200 64,106 0.340 −254.6 ± 0.1 2.9
25 1200 46,784 0.369 −251.1 ± 0.1 7.9

Note. The information provided for each fit is the noise level of the mock
21 cm signal (σ21), the number of initial live points (nlive), the total number of
likelihood evaluations (nevaluations), the final acceptance rate ( faccept), the final
evidence ( Zlog ), and the posterior 1σ rms error (σposterior). The analysis
methods and results are described in Sections 4.1 and 4.2, respectively. The 1σ
posterior signal realizations and residuals with respect to the true fiducial signal
are shown in Figure 5, and the full posterior distributions for σ21 = 25 mK and
σ21 = 5 mK are shown in Figures B1 and B2, respectively.
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astrophysical parameters ( f*, Vc, and τ) are well constrained
and unbiased with respect to (i.e., within 2σ of) their fiducial
values, while the other four parameters ( fX, α, nmin, and Rmfp)
are relatively unconstrained. For the optimistic noise levels
tested (i.e., σ21= 5 and 10 mK), our findings are similar,
although the constraints improve somewhat, in particular for fX
and nmin, reflecting the improved signal posterior realizations
seen in Figure 5.

These results demonstrate that, as a result of its low
emulation error, 21CMLSTM can sufficiently exploit even
outstandingly optimistic measurements of the global 21 cm
signal and obtain unbiased posterior constraints. We find that,
from our non-systematics-limited global 21 cm mock data
analysis, we obtain unbiased posterior constraints when the
emulator error is ≈1%−5% of the signal observational noise
level, σ21. These ratio values are based on the emulation rms
errors for the fiducial mock signals (black dashed lines in the
bottom panels of Figure 5) fit with σ21= 25 mK and
σ21= 5 mK, which are 0.31 mK and 0.24 mK, respectively.
Furthermore, these results are consistent with other comparable
Bayesian analyses of mock 21 cm data that have found that
jointly fitting complementary summary statistics or data sets is
needed to break the degeneracies between certain astrophysical
parameters (e.g., Y. Qin et al. 2020; A. Chatterjee et al. 2021;
H. T. J. Bevins et al. 2023; J. Dorigo Jones et al. 2023;
D. Breitman et al. 2024).

5. Conclusions

Achieving unbiased Bayesian parameter inference of the global
21 cm signal using an NN emulator requires the emulation error to
be much lower than the observational noise on the signal (e.g.,
J. Dorigo Jones et al. 2023). Highly accurate and fast emulation is
therefore needed to sufficiently exploit optimistic or standard
measurements of the 21 cm signal, especially to approach the
cosmic variance limit of ∼0.1 mK in the future (J. B. Muñoz &
F.-Y. Cyr-Racine 2021). To this end, in this paper, we have
presented a new emulator of the global 21 cm signal, called
21CMLSTM, which is an LSTM RNN that has exceptionally low
emulation error compared to existing emulators, which are all
FCNNs. 21CMLSTM owes its unprecedented accuracy to its
unique ability to leverage the intrinsic (spatiotemporal) correlation
of information between neighboring frequency channels in the
global 21 cm signal.

In Section 2, we optimized 21CMLSTM by testing different
architectures (i.e., the number of LSTM layers, activation
functions, loss function, and Bi-LSTMmodels), data preprocessing
steps (i.e., normalizations), and training configurations (i.e.,
number of epochs and batch sizes). A schematic diagram of the
network architecture of 21CMLSTM is shown in Figure 1. In
Section 3, we presented the emulation accuracy of 21CMLSTM
when trained and tested on large data sets created by two different
popular models of the global 21 cm signal (see Figure 2). Finally,
in Section 4, we employed a representative instance of 21CMLSTM,
trained on a 21CMGEM set, as the model in the likelihood of a
Bayesian nested sampling analysis to fit mock signals and showed
that it can be used to obtain unbiased posterior constraints.

When trained and tested on the same data as existing
emulators, 21CMLSTM has an average relative rms error of
(0.22± 0.03)% (Figure 3), corresponding to (0.39± 0.05)mK,
and a best trial mean error of 0.18% (top right panel of
Figure 2), corresponding to 0.30 mK. 21CMLSTM therefore has

a ≈1.6 times lower average error than the previously most
accurate emulator of the global 21 cm signal, 21cmVAE
(Table 2). The maximum emulation error of 21CMLSTM is
0.82% on average, which is ≈two times lower than that
reported for 21cmVAE. Furthermore, 21CMLSTM has a similar
emulation speed as other existing emulators when predicting
one signal at a time (Table 2, Section 3.2), making it both
sufficiently fast and accurate for complex, high-dimensional
Bayesian parameter estimation analyses. We also examined a
set of 21 cm signals created by the ARES model with a greater
parameter variation than the 21CMGEM set (Figure 4,
Section 3.3) and found, as might be expected, that 21CMLSTM
produces a somewhat higher emulation error when trained on
this ARES set (bottom right panel of Figure 2).
We obtained accurate posterior distributions when using

21CMLSTM in MultiNest analyses to fit mock global 21 cm
signals with added observational noise levels of σ21= 5 mK,
σ21= 10 mK, and σ21= 25 mK. The full parameter posterior
distributions for the σ21= 25 mK and σ21= 5 mK fits are
presented in Figures B1 and B2, respectively, and the posterior
signal realizations and residuals for all fits are shown in
Figure 5. The posteriors provide a good fit to each fiducial
mock signal, with the posterior mean and 1σ errors being
≈three times less than the respective adopted signal noise level,
σ21 (see the bottom panel of Figure 5, Table 3, Section 4.2).
The posterior mean residual consistently decreases as the signal
noise level decreases, with the σ21= 5 mK fit having a
posterior mean relative rms error of only 0.87% (corresponding
to 1.56 mk) compared to the pure emulation average error of
0.20% (corresponding to 0.33 mK), for the instance of
21CMLSTM employed. For all three noise levels tested, the
posterior distributions are well converged and unbiased for
three of seven parameters ( f*, Vc, and τ), and for the lowest
noise level (i.e., σ21= 5 mK), the posteriors become unbiased
for two more parameters ( fX and nmin). These results are
consistent with recent findings that jointly fitting complemen-
tary summary statistics or data sets is needed to constrain
certain astrophysical parameters (e.g., Y. Qin et al. 2020;
A. Chatterjee et al. 2021; H. T. J. Bevins et al. 2023; J. Dorigo
Jones et al. 2023; D. Breitman et al. 2024).
This work demonstrates that LSTM RNNs exploit the

intrinsic correlation of adjacent frequency channels (i.e.,
autocorrelation) in the global 21 cm signal to perform very
accurate and fast emulation of physically motivated seminu-
merical or semianalytical models of the signal. We have made
the data sets and code publicly available on Zenodo (see
footnotes 7 and 8) and GitHub (see footnote 7), respectively, so
that the 21CMLSTM emulator can be used and modified by the
community. In principle, 21CMLSTM could also be adapted to
learn the pattern of and predict any sequential or time-series
measurement, assuming sufficient data size and resolution, and
subsequently be employed in Bayesian analyses. The publicly
available emulator 21CMLSTM contributes to the growing body
of astrophysics and cosmology research finding that, for data or
measurements with intrinsic correlation over time, LSTM
RNNs can perform as well as or better than FCNNs.
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Appendix A
Loss Curves for Validation and Training Sets

Figure A1 shows the distribution of MSE loss (Equation (1))
for the training and validation sets for 20 identical trials of
21CMLSTM trained on the 21CMGEM data (see Sections 2.3 and
3.1). The validation loss for each trial reaches a stable value,
which indicates that the network is able to generalize to unseen
signals and is not overfitting the training set, whereas
increasing validation loss would indicate overfitting.

Figure A1. Loss vs. training epoch number for validation (black) and training (red) sets for 20 trials of 21CMLSTM trained on the 21CMGEM data. The top axis shows
the approximate training time at each epoch. Note that the emulator is trained for 75 epochs with a batch size of 10, before and after training for 25 epochs with a batch
size of one (see the batch scheduling description in Section 2.3).
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Appendix B
Posterior Distributions from Fitting Mock Global 21 cm

Signals with 25 mK and 5 mK Noise

In Figure B1, we present the full 1D and 2D marginalized
posterior distribution for seven astrophysical parameters
obtained when using 21CMLSTM in a nested sampling analysis
to fit a mock global 21 cm signal randomly selected from the
21CMGEM test set with a standard observational noise level of

σ21= 25 mK. In Figure B2, we present the posterior distribu-
tion when fitting a different randomly selected signal fit with
σ21= 5 mK. The 1σ posterior signal realizations for each fit
are shown in the respective panels of Figure 5. For each noise
level tested, 21CMLSTM obtains unbiased posteriors for f*, Vc,
and τ, and for the optimistic noise levels tested (i.e.,
σ21= 5 mK and 10 mK), the constraints improve for fX and
nmin. See Section 4 for further details.

Figure B1. Marginalized 1D and 2D posterior distributions for the seven astrophysical parameters of the 21CMGEM set obtained when using 21CMLSTM to fit global
21 cm signal mock data with observational noise of σ21 = 25 mK (see Section 4). These parameters control the cosmic microwave background optical depth, SFE, and
UV and X-ray photon production in galaxies (Table 1). The blue vertical and horizontal lines indicate the fiducial parameter values of the mock signal being fit,
θ0 = ( f*, Vc, fX, τ, α, nmin, Rmfp) = (1.102 × 10−2, 41.534, 6.470 × 10−4, 0.076, 1, 2, 45), which was randomly chosen from the test set (see the right panel of
Figure 5). The contour lines in the 2D histograms represent the 95% confidence levels, and density color maps are shown. The axis ranges are the full prior ranges
given in Table 1.

10

The Astrophysical Journal, 977:19 (12pp), 2024 December 10 Dorigo Jones et al.



ORCID iDs

J. Dorigo Jones https://orcid.org/0000-0002-3292-9784
S. M. Bahauddin https://orcid.org/0000-0003-0016-5377
D. Rapetti https://orcid.org/0000-0003-2196-6675
J. Mirocha https://orcid.org/0000-0002-8802-5581
J. O. Burns https://orcid.org/0000-0002-4468-2117

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, arXiv:1603.04467
Anstey, D., de Lera Acedo, E., & Handley, W. 2023, MNRAS, 520, 850
Ashton, G., Bernstein, N., Buchner, J., et al. 2022, NRvMP, 2, 39
Bale, S. D., Bassett, N., Burns, J. O., et al. 2023, arXiv:2301.10345
Bassett, N., Rapetti, D., Tauscher, K., et al. 2021, ApJ, 923, 33

Bera, A., Ghara, R., Chatterjee, A., Datta, K. K., & Samui, S. 2023, JApA,
44, 10

Bernardi, G., Zwart, J. T. L., Price, D., et al. 2016, MNRAS, 461, 2847
Bevins, H. T. J., de Lera Acedo, E., Fialkov, A., et al. 2022a, MNRAS,

513, 4507
Bevins, H. T. J., Fialkov, A., de Lera Acedo, E., et al. 2022b, NatAs, 6, 1473
Bevins, H. T. J., Handley, W. J., Fialkov, A., de Lera Acedo, E., & Javid, K.

2021, MNRAS, 508, 2923
Bevins, H. T. J., Handley, W. J., Lemos, P., et al. 2023, MNRAS, 526, 4613
Bevins, H. T. J., Heimersheim, S., Abril-Cabezas, I., et al. 2024, MNRAS,

527, 813
Bosman, S. E. I., Davies, F. B., Becker, G. D., et al. 2022, MNRAS, 514, 55
Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J., &

Mahesh, N. 2018, Natur, 555, 67
Bradley, R. F., Tauscher, K., Rapetti, D., & Burns, J. O. 2019, ApJ, 874, 153
Breitman, D., Mesinger, A., Murray, S. G., et al. 2024, MNRAS, 527, 9833

Figure B2. The same as Figure B1, but when using 21CMLSTM to fit a different randomly selected signal from the 21CMGEM test set with θ0 = ( f*, Vc, fX, τ, α, nmin,
Rmfp) = (1.581 × 10−1, 16.5, 0.1, 0.0626, 1, 0.2, 40) and observational noise of σ21 = 5 mK (see the left panel of Figure 5).

11

The Astrophysical Journal, 977:19 (12pp), 2024 December 10 Dorigo Jones et al.

https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0002-3292-9784
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-0016-5377
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0003-2196-6675
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-8802-5581
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
https://orcid.org/0000-0002-4468-2117
http://arxiv.org/abs/1603.04467
https://doi.org/10.1093/mnras/stad156
https://ui.adsabs.harvard.edu/abs/2023MNRAS.520..850A/abstract
https://doi.org/10.1038/s43586-022-00121-x
https://ui.adsabs.harvard.edu/abs/2022NRvMP...2...39A/abstract
http://arXiv.org/abs/2301.10345
https://doi.org/10.3847/1538-4357/ac1cde
https://ui.adsabs.harvard.edu/abs/2021ApJ...923...33B/abstract
https://doi.org/10.1007/s12036-022-09904-w
https://ui.adsabs.harvard.edu/abs/2023JApA...44...10B/abstract
https://ui.adsabs.harvard.edu/abs/2023JApA...44...10B/abstract
https://doi.org/10.1093/mnras/stw1499
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461.2847B/abstract
https://doi.org/10.1093/mnras/stac1158
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513.4507B/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.513.4507B/abstract
https://doi.org/10.1038/s41550-022-01825-6
https://ui.adsabs.harvard.edu/abs/2022NatAs...6.1473B/abstract
https://doi.org/10.1093/mnras/stab2737
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508.2923B/abstract
https://doi.org/10.1093/mnras/stad2997
https://ui.adsabs.harvard.edu/abs/2023MNRAS.526.4613B/abstract
https://doi.org/10.1093/mnras/stad3194
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527..813B/abstract
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527..813B/abstract
https://doi.org/10.1093/mnras/stac1046
https://ui.adsabs.harvard.edu/abs/2022MNRAS.514...55B/abstract
https://doi.org/10.1038/nature25792
https://ui.adsabs.harvard.edu/abs/2018Natur.555...67B/abstract
https://doi.org/10.3847/1538-4357/ab0d8b
https://ui.adsabs.harvard.edu/abs/2019ApJ...874..153B/abstract
https://doi.org/10.1093/mnras/stad3849
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.9833B/abstract


Buchner, J. 2023, StSur, 17, 169
Bye, C. H., Portillo, S. K. N., & Fialkov, A. 2022, ApJ, 930, 79
Chatterjee, A., Choudhury, T. R., & Mitra, S. 2021, MNRAS, 507, 2405
Chollet, F., 2015 Keras, https://github.com/fchollet/keras
Cohen, A., Fialkov, A., Barkana, R., & Monsalve, R. A. 2020, MNRAS,

495, 4845
Cohen, A., Fialkov, A., Barkana, R., & Monsalve, R. 2021, Datset for

21cmVAE, v1, Zenodo, doi:10.5281/zenodo.5084114
de Lera Acedo, E., de Villiers, D. I. L., Razavi-Ghods, N., et al. 2022, NatAs,

6, 984
Dorigo Jones, J., & Bahauddin, S., 2024 jdorigojones/21cmLSTM: 21cmLSTM

Initial Release, v1.0.0, Zenodo, doi:10.5281/zenodo.13916935
Dorigo Jones, J., Rapetti, D., Mirocha, J., et al. 2023, ApJ, 959, 49
Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, AJ, 132, 117
Feroz, F., & Hobson, M. P. 2008, MNRAS, 384, 449
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Feroz, F., Hobson, M. P., Cameron, E., & Pettitt, A. N. 2019, OJAp, 2, 10
Fialkov, A., Barkana, R., & Visbal, E. 2014, Natur, 506, 197
Fialkov, A., Barkana, R., Visbal, E., Tseliakhovich, D., & Hirata, C. M. 2013,

MNRAS, 432, 2909
Furlanetto, S. R., Oh, S. P., & Briggs, F. H. 2006, PhR, 433, 181
Garsden, H., Greenhill, L., Bernardi, G., et al. 2021, MNRAS, 506, 5802
Gers, F. A., Schmidhuber, J., & Cummins, F. 2000, Neural Comput., 12, 2451
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Natur, 585, 357
HERA Collaboration, Abdurashidova, Z., Adams, T., et al. 2023, ApJ,

945, 124
Hibbard, J. J., Rapetti, D., Burns, J. O., Mahesh, N., & Bassett, N. 2023, ApJ,

959, 103
Hibbard, J. J., Tauscher, K., Rapetti, D., & Burns, J. O. 2020, ApJ, 905, 113
Hills, R., Kulkarni, G., Meerburg, P. D., & Puchwein, E. 2018, Natur, 564, E32
Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735
Hu, L., Chen, X., & Wang, L. 2022, ApJ, 930, 70
Huber, S., & Suyu, S. H. 2024, arXiv:2403.08029
Hunter, J. D. 2007, CSE, 9, 90
Iess, A., Cuoco, E., Morawski, F., Nicolaou, C., & Lahav, O. 2023, A&A,

669, A42
Jin, X., Yang, J., Fan, X., et al. 2023, ApJ, 942, 59
Kern, N. S., Parsons, A. R., Dillon, J. S., et al. 2020, ApJ, 888, 70
Kingma, D., & Ba, J. 2015, arXiv:1412.6980
Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, in Positioning and Power

in Academic Publishing: Players, Agents and Agendas, ed. F. Loizides &
B. Scmidt (Amsterdam: IOS Press), 87

Kodi Ramanah, D., Arendse, N., & Wojtak, R. 2022, MNRAS, 512, 5404
Kraus, J. 1966, “System Noise” in Radio Astronomy (New York: McGraw-Hill)
LeCun, Y., Bengio, Y., & Hinton, G. 2015, Natur, 521, 436
Leeney, S. A. K., Handley, W. J., & Acedo, E. d. L. 2023, PhRvD, 108,

062006
Lemos, P., Weaverdyck, N., Rollins, R. P., et al. 2023, MNRAS, 521, 1184
Li, J. I.-H., Johnson, S. D., Avestruz, C., et al. 2024, arXiv:2407.14621
Liu, A., & Shaw, J. R. 2020, PASP, 132, 062001
Liu, H., Liu, C., Wang, J. T. L., & Wang, H. 2019, ApJ, 877, 121
Mahalanobis, P. C. 2018, Sankhya, 80, S1
Mason, C. A., Naidu, R. P., Tacchella, S., & Leja, J. 2019, MNRAS, 489, 2669
McGreer, I. D., Mesinger, A., & D’Odorico, V. 2015, MNRAS, 447, 499
Mertens, F. G., Mevius, M., Koopmans, L. V. E., et al. 2020, MNRAS,

493, 1662

Mesinger, A., Furlanetto, S., & Cen, R. 2011, MNRAS, 411, 955
Mirocha, J. 2014, MNRAS, 443, 1211
Mirocha, J., & Furlanetto, S. R. 2019, MNRAS, 483, 1980
Mirocha, J., Furlanetto, S. R., & Sun, G. 2017, MNRAS, 464, 1365
Mirocha, J., Skory, S., Burns, J. O., & Wise, J. H. 2012, ApJ, 756, 94
Monsalve, R. A., Fialkov, A., Bowman, J. D., et al. 2019, ApJ, 875, 67
Muñoz, J. B., & Cyr-Racine, F.-Y. 2021, PhRvD, 103, 023512
Murray, S. G., Bowman, J. D., Sims, P. H., et al. 2022, MNRAS, 517, 2264
Paciga, G., Chang, T.-C., Gupta, Y., et al. 2011, MNRAS, 413, 1174
Pagano, M., Sims, P., Liu, A., et al. 2024, MNRAS, 527, 5649
Pascanu, R., Mikolov, T., & Bengio, Y. 2013, in Proc. Machine Learning Research,

Proc. 30th Int. Conf. on Machine Learning, 28, ed. S. Dasgupta & D. McAllester
(PMLR), 1310, https://proceedings.mlr.press/v28/pascanu13.html

Pattison, J. H. N., Cavillot, J., Bevins, H. T. J., Anstey, D. J., & de Lera Acedo, E.
2024, arXiv:2408.06012

Prelogović, D., Mesinger, A., Murray, S., Fiameni, G., & Gillet, N. 2022,
MNRAS, 509, 3852

Qin, Y., Mesinger, A., Park, J., Greig, B., & Muñoz, J. B. 2020, MNRAS,
495, 123

Rapetti, D., Tauscher, K., Mirocha, J., & Burns, J. O. 2020, ApJ, 897, 174
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Natur, 323, 533
Saxena, A., Meerburg, P. D., Weniger, C., de Lera Acedo, E., & Handley, W.

2024, arXiv:2403.14618
Schmit, C. J., & Pritchard, J. R. 2018, MNRAS, 475, 1213
Shaver, P. A., Windhorst, R. A., Madau, P., & de Bruyn, A. G. 1999, A&A,

345, 380
Shen, E., Anstey, D., de Lera Acedo, E., & Fialkov, A. 2022, MNRAS,

515, 4565
Sherstinsky, A. 2020, PhyD, 404, 132306
Shi, X., Chen, Z., Wang, H., et al. 2015, arXiv:1506.04214
Shi, Y., Deng, F., Xu, Y., et al. 2022, ApJ, 929, 32
Sims, P. H., Bowman, J. D., Mahesh, N., et al. 2023, MNRAS, 521, 3273
Sims, P. H., & Pober, J. C. 2020, MNRAS, 492, 22
Singh, S., Jishnu, N. T., Subrahmanyan, R., et al. 2022, NatAs, 6, 607
Singh, S., Subrahmanyan, R., Udaya Shankar, N., et al. 2018, ApJ, 858, 54
Skilling, J. 2004, in AIP Conf. Ser. 735, Bayesian Inference and Maximum

Entropy Methods in Science and Engineering, ed. R. Fischer, R. Preuss, &
U. V. Toussaint (Melville, NY: AIP), 395

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. 2017, arXiv:1711.00489
Staudemeyer, R. C., & Morris, E. R. 2019, arXiv:1909.09586
Sun, Z., Bobra, M. G., Wang, X., et al. 2022, ApJ, 931, 163
Tabasi, S. S., Salmani, R. V., Khaliliyan, P., & Firouzjaee, J. T. 2023, ApJ,

954, 164
Tauscher, K., Rapetti, D., & Burns, J. O. 2020, ApJ, 897, 132
Trott, C. M., Jordan, C. H., Midgley, S., et al. 2020, MNRAS, 493, 4711
Van Rossum, G., & Drake, F. L., Jr. 1995, Python Reference Manual

(Amsterdam: Centrum voor Wiskunde en Informatica)
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D., & Hirata, C. M. 2012,

Natur, 487, 70
Williams, R. J., & Zipser, D. 1995, Gradient-based Learning Algorithms for

Recurrent Networks and their Computational Complexity (USA: L.
Erlbaum Assoc. Inc.), 433

Zhang, R., Liu, Y., & Sun, H. 2020, CMAME, 369, 113226
Zheng, Y., Li, X., Yan, S., et al. 2023, MNRAS, 521, 5384
Zhu, Y., Becker, G. D., Bosman, S. E. I., et al. 2022, ApJ, 932, 76

12

The Astrophysical Journal, 977:19 (12pp), 2024 December 10 Dorigo Jones et al.

https://doi.org/10.1214/23-SS144
https://ui.adsabs.harvard.edu/abs/2023StSur..17..169B/abstract
https://doi.org/10.3847/1538-4357/ac6424
https://ui.adsabs.harvard.edu/abs/2022ApJ...930...79B/abstract
https://doi.org/10.1093/mnras/stab2316
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.2405C/abstract
https://keras.io
https://doi.org/10.1093/mnras/staa1530
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.4845C/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.4845C/abstract
http://arXiv.org/abs/10.5281/zenodo.5084114
https://doi.org/10.1038/s41550-022-01709-9
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..984D/abstract
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..984D/abstract
http://arXiv.org/abs/10.5281/zenodo.13916935
https://doi.org/10.3847/1538-4357/ad003e
https://ui.adsabs.harvard.edu/abs/2023ApJ...959...49D/abstract
https://doi.org/10.1086/504836
https://ui.adsabs.harvard.edu/abs/2006AJ....132..117F/abstract
https://doi.org/10.1111/j.1365-2966.2007.12353.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.384..449F/abstract
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1601F/abstract
https://doi.org/10.21105/astro.1306.2144
https://ui.adsabs.harvard.edu/abs/2019OJAp....2E..10F/abstract
https://doi.org/10.1038/nature12999
https://ui.adsabs.harvard.edu/abs/2014Natur.506..197F/abstract
https://doi.org/10.1093/mnras/stt650
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.2909F/abstract
https://doi.org/10.1016/j.physrep.2006.08.002
https://ui.adsabs.harvard.edu/abs/2006PhR...433..181F/abstract
https://doi.org/10.1093/mnras/stab1671
https://ui.adsabs.harvard.edu/abs/2021MNRAS.506.5802G/abstract
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1038/s41586-020-2649-2
https://ui.adsabs.harvard.edu/abs/2020Natur.585..357H/abstract
https://doi.org/10.3847/1538-4357/acaf50
https://ui.adsabs.harvard.edu/abs/2023ApJ...945..124H/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...945..124H/abstract
https://doi.org/10.3847/1538-4357/ad06b3
https://ui.adsabs.harvard.edu/abs/2023ApJ...959..103H/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...959..103H/abstract
https://doi.org/10.3847/1538-4357/abc3c5
https://ui.adsabs.harvard.edu/abs/2020ApJ...905..113H/abstract
https://doi.org/10.1038/s41586-018-0796-5
https://ui.adsabs.harvard.edu/abs/2018Natur.564E..32H/abstract
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3847/1538-4357/ac5c48
https://ui.adsabs.harvard.edu/abs/2022ApJ...930...70H/abstract
http://arxiv.org/abs/2403.08029
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.1051/0004-6361/202142525
https://ui.adsabs.harvard.edu/abs/2023A&A...669A..42I/abstract
https://ui.adsabs.harvard.edu/abs/2023A&A...669A..42I/abstract
https://doi.org/10.3847/1538-4357/aca678
https://ui.adsabs.harvard.edu/abs/2023ApJ...942...59J/abstract
https://doi.org/10.3847/1538-4357/ab5e8a
https://ui.adsabs.harvard.edu/abs/2020ApJ...888...70K/abstract
http://arXiv.org/abs/1412.6980
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/mnras/stac838
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.5404K/abstract
https://doi.org/10.1038/nature14539
https://doi.org/10.1103/PhysRevD.108.062006
https://ui.adsabs.harvard.edu/abs/2023PhRvD.108f2006L/abstract
https://ui.adsabs.harvard.edu/abs/2023PhRvD.108f2006L/abstract
https://doi.org/10.1093/mnras/stac2786
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.1184L/abstract
http://arxiv.org/abs/2407.14621
https://doi.org/10.1088/1538-3873/ab5bfd
https://ui.adsabs.harvard.edu/abs/2020PASP..132f2001L/abstract
https://doi.org/10.3847/1538-4357/ab1b3c
https://ui.adsabs.harvard.edu/abs/2019ApJ...877..121L/abstract
https://doi.org/10.1007/s13171-019-00164-5
https://doi.org/10.1093/mnras/stz2291
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.2669M/abstract
https://doi.org/10.1093/mnras/stu2449
https://ui.adsabs.harvard.edu/abs/2015MNRAS.447..499M/abstract
https://doi.org/10.1093/mnras/staa327
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.1662M/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.1662M/abstract
https://doi.org/10.1111/j.1365-2966.2010.17731.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.411..955M/abstract
https://doi.org/10.1093/mnras/stu1193
https://ui.adsabs.harvard.edu/abs/2014MNRAS.443.1211M/abstract
https://doi.org/10.1093/mnras/sty3260
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.1980M/abstract
https://doi.org/10.1093/mnras/stw2412
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.1365M/abstract
https://doi.org/10.1088/0004-637X/756/1/94
https://ui.adsabs.harvard.edu/abs/2012ApJ...756...94M/abstract
https://doi.org/10.3847/1538-4357/ab07be
https://ui.adsabs.harvard.edu/abs/2019ApJ...875...67M/abstract
https://doi.org/10.1103/PhysRevD.103.023512
https://ui.adsabs.harvard.edu/abs/2021PhRvD.103b3512M/abstract
https://doi.org/10.1093/mnras/stac2600
https://ui.adsabs.harvard.edu/abs/2022MNRAS.517.2264M/abstract
https://doi.org/10.1111/j.1365-2966.2011.18208.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.413.1174P/abstract
https://doi.org/10.1093/mnras/stad3392
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.5649P/abstract
https://proceedings.mlr.press/v28/pascanu13.html
http://arxiv.org/abs/2408.06012
https://doi.org/10.1093/mnras/stab3215
https://ui.adsabs.harvard.edu/abs/2022MNRAS.509.3852P/abstract
https://doi.org/10.1093/mnras/staa1131
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..123Q/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..123Q/abstract
https://doi.org/10.3847/1538-4357/ab9b29
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..174R/abstract
https://doi.org/10.1038/323533a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..533R/abstract
http://arxiv.org/abs/2403.14618
https://doi.org/10.1093/mnras/stx3292
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.1213S/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...345..380S/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...345..380S/abstract
https://doi.org/10.1093/mnras/stac1900
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.4565S/abstract
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.4565S/abstract
https://doi.org/10.1016/j.physd.2019.132306
https://ui.adsabs.harvard.edu/abs/2020PhyD..40432306S/abstract
http://arXiv.org/abs/1506.04214
https://doi.org/10.3847/1538-4357/ac5965
https://ui.adsabs.harvard.edu/abs/2022ApJ...929...32S/abstract
https://doi.org/10.1093/mnras/stad610
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.3273S/abstract
https://doi.org/10.1093/mnras/stz3388
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492...22S/abstract
https://doi.org/10.1038/s41550-022-01610-5
https://ui.adsabs.harvard.edu/abs/2022NatAs...6..607S/abstract
https://doi.org/10.3847/1538-4357/aabae1
https://ui.adsabs.harvard.edu/abs/2018ApJ...858...54S/abstract
https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S/abstract
http://arxiv.org/abs/1711.00489
http://arXiv.org/abs/1909.09586
https://doi.org/10.3847/1538-4357/ac64a6
https://ui.adsabs.harvard.edu/abs/2022ApJ...931..163S/abstract
https://doi.org/10.3847/1538-4357/ace03f
https://ui.adsabs.harvard.edu/abs/2023ApJ...954..164T/abstract
https://ui.adsabs.harvard.edu/abs/2023ApJ...954..164T/abstract
https://doi.org/10.3847/1538-4357/ab9a3f
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..132T/abstract
https://doi.org/10.1093/mnras/staa414
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4711T/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.1038/nature11177
https://ui.adsabs.harvard.edu/abs/2012Natur.487...70V/abstract
https://doi.org/10.1016/j.cma.2020.113226
https://ui.adsabs.harvard.edu/abs/2020CMAME.369k3226Z/abstract
https://doi.org/10.1093/mnras/stad839
https://ui.adsabs.harvard.edu/abs/2023MNRAS.521.5384Z/abstract
https://doi.org/10.3847/1538-4357/ac6e60
https://ui.adsabs.harvard.edu/abs/2022ApJ...932...76Z/abstract

	1. Introduction
	2. Methods
	2.1. Architecture
	2.2. Data Sets
	2.3. Training

	3. Emulation Results
	3.1. Accuracy
	3.2. Speed
	3.3. Model Comparison

	4. Posterior Emulation
	4.1. Bayesian Inference Analysis
	4.2. Posterior Results

	5. Conclusions
	Appendix ALoss Curves for Validation and Training Sets
	Appendix BPosterior Distributions from Fitting Mock Global 21 cm Signals with 25 mK and 5 mK Noise
	References



